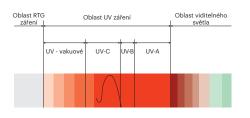


FagronLab™ UVGI-80


UV sterilizátor vzduchu

FagronLab™ UVGI-80 UV sterilizátor vzduchu

Sterilizátor vzduchu vhodný pro dezinfekci vnitřních prostor nemocnic, ordinací a čekáren lékařů, lékáren, či prostor farmaceutické výroby.

- Jednoduché ovládání pomocí jediného tlačítka.
- Ruční nastavení a kontrola dezinfekčního procesu.
- Snadná demontáž vnějšího pláště umožňující pohodlné čištění a údržbu. Tichý chod ventilátoru.
- Sterilizace vzduchu zajištěna pomocí UV-C lamp s dlouhou životností emitujících záření o vlnové délce 253,7 nm.
- Konstrukce na kolečkách pro snadný a tichý přesun mezi místnostmi.
- Propracované technické řešení s bočním nasáváním vzduchu, díky kterému lze přístroj umístit ke zdi.

Výsledky testů účinnosti FagronLab™ UVGI-80

Test účinnosti proti Staphylococcus albus

Test byl proveden v třech paralelních stanoveních v teplotním rozmezí 20-25 °C, při relativní vlhkosti vzduchu v rozmezí 50-70 %. Účinnost na eradikaci Staphylococcus albus byla po 60 minutách provozu sterilizátoru 99,90 %; 99,92 %; resp. 99,90 %.

Experimentální data kvantitativního testu na účinnost dezinfekce vzduchu

	Doba provozu přstroje (min)	Test č.:	Kontrolní skupina			Testovaná skupina		
Testované kmeny			Počet bakterií před začátkem testu (cfu/m³)	Počet bakterií po provedení testu (cfu/m³)	Míra přirozeného rozpadu (%)	Počet bakterií před začátkem testu (cfu/m³)	Počet bakterií po provedení testu (cfu/m³)	Míra sterilizace (%)
Staphylococcus albus	60	1	8.06×104	6.35×10⁴	21.22	8.55×104	65	99.90
		2	9.17×104	7.37×104	19.63	8.31×104	53	99.92
		3	1.10×10⁵	8.36×104	24.00	1.06×10⁵	82	99.90

Zdroie

- Chang L, Yan Y, Wang L. Coronavirus Disease 2019: Coronaviruses and Blood Safety [published online ahead of print, 2020 Feb 21]. Transfus Med Rev. 2020;. doi:10.1016/j.tmrv.2020.02.003
 Eischeid AC, Meyer JN, Linden KG. UV disinfection of adenoviruses: molecular indications of DNA damage efficiency. Appl Environ Microbiol. 2009;75(1):23-28. doi:10.1128/AEM.02199-08
- 3 Nerandzic MM, Fisher CW, Donskey CJ. Sorting through the wealth of options: comparative evalu-ation of two ultraviolet disinfection systems. PLoS One. 2014;9(9):e107444. Published 2014 Sep 23. doi:10.1371/iournal.pone.0107444
- 4.
- doi:10.1371/journal.pone.0107444 Kim DK, Kang DH. Elevated Inactivation Efficacy of a Pulsed UVC Light-Emitting Diode System for Foodborne Pathogens on Selective Media and Food Surfaces. Appl Environ Microbiol. 2018;84(20):e01340-18. Published 2018 Oct 1. doi:10.1128/AEM.01340-18 Nishisaka-Nonaka R, Mawatari K, Yamamoto T, et al. Irradiation by ultraviolet light-emitting diodes inactivates influenza a viruses by inhibiting replication and transcription of viral RNA in host cells. J Photochem Photobiol B. 2018;189:193-200. doi:10.1016/j.jphotobiol.2018.10.017 Eickmann M, Gravemann U, Handke W, et al. Inactivation of Ebola virus and Middle East respiratory syndrome coronavirus in platelet concentrates and plasma by ultraviolet C light and methylene 5

FAGRON a.s. Holická 1098/31m 779 00 Olomouc Česká republika

Tel.: +420 585 222 590 Fax.: +420 585 226 521 www.fagron.cz

Technické parametry

Objem cirkulujícího	až 800 m³/h		
Hlučnost	do 55 dB		
Koncentrace O ₃ v ovzdu	do 0.1 mg/m ³		
Vhodné pro prostor	do 80 m³		
Únik UV záření	do 5 µw/cm²		
	Teplotní rozmezí	od 10 °C do 40 °C	
Pracovní prostředí	Vlhkost	do 80 %	
	Atmosferický tlak	od 60 KPa do 106 KPa	
Spotřeba	do 260 W		
Napájení (střídavý p	220 V±10 %, 50/60 Hz		
Rozměry (šxhxv)	425x300x830 mm		
Rozměry balení (šxh	510x384x930 mm		
Celková hmotnost	28.5 kg		

Test účinnosti proti mikroorganismům v ovzduší

Účinnost sterilizátoru na eradikaci mikroorganismů v ovzduší byla stanovena po 90 minutách užívání pro tři paralelní stanovení na 90,42 %, 90,56 %, resp. 92,17 %.

Experimentální data kvantitativního testu na účinnost dezinfekce vzduchu

Testovaná skupina Počet bakterií po provedení testu (cfu/m³) Testované kmeny Míra sterilizace (%) et bakterií začátkem ı (cfu/m³) Doba provozu přstroje (min) š Počet před z testu (Test Mikroorganismy 2.40×103 2.30×10² 90.42 1 uší v ovzd 120 2 1.95×103 1.84×10² 90.56

blue plus visible light, respectively. Transfusion. 2018;58(9):2202-2207. doi:10.1111/trf.14652 LX, Cai M, Wang L, Niu F, Yang D, Zhang G. Evaluation survey of microbial disinfection methods in UV-LED water treatment systems. Sci Total Environ. 2019;659:1415-1427. doi:10.1016/j.scito-7. tenv.2018.12.344

- 8. Anderson DJ, Moehring RW, Weber DJ, et al. Effectiveness of targeted enhanced terminal room disinfection on hospital-wide acquisition and infection with multidrug-resistant organisms and Clostridium difficile: a secondary analysis of a multicentre cluster randomised controlled trial with crossover design (BETR Disinfection). Lancet Infect Dis. 2018;18(8):845-853. doi:10.1016/S1473-3099(18)30278-0
- Jelden KC, Gibbs SG, Smith PW, et al. Comparison of hospital room surface disinfection using a novel ultraviolet germicidal irradiation (UVGI) generator. J Occup Environ Hyg. 2016;13(9):690-698. doi:10.1080/15459624.2016.1166369 9.
- Beck SE, Wright HB, Hargy TM, Larason TC, Linden KG. Action spectra for validation of pathogen disinfection in medium-pressure ultraviolet (UV) systems. Water Res. 2015;70:27-37. doi:10.1016/j. watres.2014.11.028

